organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-N,N-Diethyl-3-hydroxy-3,5-diphenylpent-4-enamide

Zhi-Fang Yu,* Yan-Gang Li, Juan Li and Zhi-Min Zhao

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: zfyu@tju.edu.cn

Received 4 April 2007; accepted 9 April 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.054; wR factor = 0.202; data-to-parameter ratio = 14.9.

The title compound, $C_{21}H_{25}NO_2$, was synthesized by a Reformatsky-type reaction. In the molecule, the dihedral angle between the two phenyl rings is 66.1 (1)° and the crystal packing exhibits no classical hydrogen bonds.

Related literature

For related literature, see: Ocamp & Doliber (2004).

Experimental

Crystal data

 $C_{21}H_{25}NO_2$ V = 3741 (2) Å³ $M_r = 323.42$ Z = 8Orthorhombic, *Pbca*Mo K α radiationa = 10.156 (3) Å $\mu = 0.07 \text{ mm}^{-1}$ b = 10.339 (4) ÅT = 294 (2) Kc = 35.621 (12) Å $0.22 \times 0.20 \times 0.16 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.984, T_{\rm max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.202$ S = 1.033271 reflections 220 parameters 12 restraints H-atom parameters constrained

11761 measured reflections

 $R_{\rm int} = 0.060$

3271 independent reflections

1480 reflections with $I > 2\sigma(I)$

$$\begin{split} &\Delta\rho_{\rm max}=0.14~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.15~{\rm e}~{\rm \AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2270).

References

Bruker (1997). SHELXTL, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ocamp, R. & Doliber, W. R. (2004). Tetrahedron, 60, 9325-9374.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o2490 [doi:10.1107/S1600536807017515]

(E)-N,N-Diethyl-3-hydroxy-3,5-diphenylpent-4-enamide

Z.-F. Yu, Y.-G. Li, J. Li and Z.-M. Zhao

Comment

The Reformatsky reaction provides a good strategy of carbon-carbon bond formation (Ocamp & Doliber, 2004). In our study on the Reformatsky-type reaction of α -bromoacetamide with α , β -unsaturated ketone, we found that the most attractive feature of the reaction is its chemoselectivity, and a new compound, (I), has been synthesized by reaction of 1,3-diphenyl-propenone with *N*,*N*-diethyl-2-bromoacetamide. The structure determination of compound (I) was undertaken and the results are presented here.

The bond distances and angles are in good agreement with those respective normal values. In compound (I), the dihedral angle between the two phenyl rings is 113.9 (1)°, and the carbon-carbon double bond adopts E-configuration, which is also confirmed by the respective coupling constant (J = 16 Hz) in the ¹H NMR spectroscopy of compound (I). The torsion angle of C6—C7—C8 —C9 is -179.3 (3) °, which indicates that they are approximately coplannar. The bond distance of C17—N1 [1.334 (4) Å] is significantly shorter than those of C18—N1 [1.482 (4) Å] and C20—N1 [1.487 (5) Å] because of γ *p*- π conjugation.

Experimental

To a solution of 1,3-diphenyl-propenone (1 mmol) in dichloromethane (5 ml), *N*,*N*-diethyl-2-bromoacetamide (2 mmol), zinc powder (3 mmol) and a trace amount of iodine were added to the mixture in order. The reaction mixture was refluxed with stirring for 5 h and then quenched with a saturated solution of ammonium chloride (8 ml). The mixture was filtered and extracted with dichloromethane, dried over magnesium sulfate. After evaporation of the solvent, a white solid was obtained (0.236 g, yield 73%) by column chromatography (silica gel/petroleum ether-ethyl acetate = 7/3, v/v). The colorless single crystals of compound was obtained through the evaporation of ethyl acetate-petroleum ether. Spectroscopic analysis: IR (KBr, vcm⁻¹):3293, 1613; ¹H NMR (CDCl₃, δ , p.p.m.): 7.54-7.18 (m, 10H), 6.82 (s, 1H), 6.67 (d, 1H), 6.47 (d, 1H), 3.29 (m, 4H), 2.99 (d, 1H), 2.90 (d, 1H), 1.16 (t, 3H), 0.98 (t, 3H).

Refinement

All carbon H atoms were positioned geometrically and refined as riding (C—H = 0.93 - 0.97 Å). For the CH and CH₂ groups, $U_{iso}(H)$ values were set equal to $1.2U_{eq}(C)$ and for the methyl groups, they were set equal to $1.5U_{eq}(C)$. Atom H1 was refined with O1—H1 = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

(E)—N,N-Diethyl-3-hydroxy-3,5-diphenylpent-4-enamide

Crystal data

C ₂₁ H ₂₅ NO ₂	$D_{\rm x} = 1.149 {\rm ~Mg~m}^{-3}$
$M_r = 323.42$	Melting point: 318 K
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 1542 reflections
a = 10.156 (3) Å	$\theta = 2.3 - 20.5^{\circ}$
b = 10.339 (4) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 35.621 (12) Å	T = 294 (2) K
$V = 3741 (2) \text{ Å}^3$	Needle, colourless
Z = 8	$0.22\times0.20\times0.16~mm$
$F_{000} = 1392$	

Data collection

Bruker SMART CCD area-detector diffractometer	3271 independent reflections
Radiation source: fine-focus sealed tube	1480 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.984, T_{\max} = 0.988$	$k = -12 \rightarrow 5$
11761 measured reflections	$l = -42 \rightarrow 34$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 0.1641P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.202$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$

3271 reflections $\Delta \rho_{min} = -0.15 \text{ e Å}^{-3}$ 220 parametersExtinction correction: none12 restraintsPrimary atom site location: structure-invariant direct
methodsSecondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.0108 (2)	0.4384 (2)	0.34952 (6)	0.0708 (7)
H1	-0.0179	0.4120	0.3279	0.106*
O2	0.0823 (3)	0.2997 (3)	0.29268 (6)	0.0793 (8)
N1	0.2939 (3)	0.2396 (3)	0.29241 (7)	0.0690 (9)
C1	0.1788 (4)	0.5408 (4)	0.48042 (10)	0.0810 (12)
H1A	0.2237	0.4649	0.4747	0.097*
C2	0.2020 (4)	0.6018 (5)	0.51398 (11)	0.0945 (14)
H2	0.2622	0.5666	0.5308	0.113*
C3	0.1385 (5)	0.7126 (5)	0.52296 (12)	0.0944 (14)
Н3	0.1554	0.7532	0.5458	0.113*
C4	0.0503 (5)	0.7645 (4)	0.49870 (13)	0.0993 (15)
H4	0.0064	0.8406	0.5048	0.119*
C5	0.0261 (4)	0.7036 (4)	0.46502 (10)	0.0831 (12)
Н5	-0.0348	0.7394	0.4485	0.100*
C6	0.0898 (3)	0.5906 (3)	0.45503 (8)	0.0592 (9)
C7	0.0603 (3)	0.5289 (4)	0.41901 (8)	0.0621 (9)
H7	0.0076	0.5752	0.4024	0.074*
C8	0.1004 (3)	0.4155 (4)	0.40781 (8)	0.0586 (9)
H8	0.1524	0.3686	0.4244	0.070*
C9	0.0707 (3)	0.3528 (3)	0.37033 (8)	0.0546 (9)
C10	0.0025 (3)	0.2238 (3)	0.37714 (8)	0.0536 (9)
C11	0.0664 (4)	0.1252 (4)	0.39667 (10)	0.0740 (11)
H11	0.1530	0.1382	0.4043	0.089*
C12	0.0074 (6)	0.0114 (5)	0.40498 (12)	0.0988 (14)
H12	0.0531	-0.0519	0.4182	0.119*
C13	-0.1177 (7)	-0.0099 (5)	0.39410 (13)	0.1073 (17)
H13	-0.1579	-0.0882	0.3999	0.129*

C14	-0.1873 (4)	0.0831 (6)	0.37449 (12)	0.0945 (15)
H14	-0.2736	0.0679	0.3670	0.113*
C15	-0.1249 (4)	0.2011 (4)	0.36615 (9)	0.0746 (11)
H15	-0.1707	0.2645	0.3530	0.089*
C16	0.2026 (3)	0.3355 (4)	0.34956 (8)	0.0631 (10)
H16A	0.2484	0.4178	0.3492	0.076*
H16B	0.2566	0.2747	0.3634	0.076*
C17	0.1878 (4)	0.2876 (3)	0.30959 (9)	0.0565 (9)
C18	0.2871 (4)	0.2085 (4)	0.25183 (9)	0.0767 (11)
H18A	0.2266	0.2676	0.2396	0.092*
H18B	0.3733	0.2203	0.2407	0.092*
C19	0.2427 (5)	0.0740 (4)	0.24549 (13)	0.1223 (17)
H19A	0.3028	0.0152	0.2574	0.183*
H19B	0.2400	0.0567	0.2190	0.183*
H19C	0.1563	0.0627	0.2560	0.183*
C20	0.4265 (5)	0.2287 (5)	0.30977 (11)	0.1050 (17)
H20A	0.4744	0.1586	0.2979	0.126*
H20B	0.4170	0.2078	0.3362	0.126*
C21	0.5042 (5)	0.3523 (7)	0.30588 (13)	0.133 (2)
H21A	0.5124	0.3741	0.2798	0.199*
H21B	0.5902	0.3406	0.3165	0.199*
H21C	0.4595	0.4208	0.3188	0.199*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0724 (17)	0.0813 (17)	0.0586 (13)	0.0152 (13)	-0.0094 (13)	-0.0002 (12)
O2	0.0540 (16)	0.129 (2)	0.0554 (13)	-0.0034 (15)	-0.0014 (12)	-0.0159 (14)
N1	0.065 (2)	0.088 (2)	0.0539 (16)	0.0176 (17)	0.0032 (16)	-0.0027 (14)
C1	0.083 (3)	0.098 (3)	0.062 (2)	0.011 (2)	-0.008 (2)	-0.019 (2)
C2	0.098 (4)	0.124 (4)	0.062 (2)	0.000 (3)	-0.009 (2)	-0.020(3)
C3	0.103 (4)	0.114 (4)	0.067 (3)	-0.033 (3)	0.016 (3)	-0.028 (3)
C4	0.124 (4)	0.079 (3)	0.095 (3)	-0.002 (3)	0.008 (3)	-0.030 (3)
C5	0.102 (3)	0.073 (3)	0.075 (2)	0.002 (2)	-0.005 (2)	-0.010 (2)
C6	0.061 (2)	0.066 (2)	0.0509 (18)	-0.0086 (19)	0.0087 (18)	-0.0026 (17)
C7	0.062 (2)	0.070 (3)	0.0534 (19)	-0.003 (2)	-0.0007 (17)	0.0001 (18)
C8	0.054 (2)	0.073 (3)	0.0491 (18)	-0.0012 (19)	0.0007 (15)	-0.0031 (17)
C9	0.0411 (19)	0.075 (2)	0.0479 (17)	0.0050 (18)	-0.0027 (15)	-0.0011 (16)
C10	0.045 (2)	0.072 (2)	0.0440 (16)	-0.0017 (19)	0.0070 (16)	-0.0115 (17)
C11	0.072 (3)	0.080 (3)	0.070 (2)	-0.008 (2)	0.001 (2)	-0.002 (2)
C12	0.121 (4)	0.092 (4)	0.083 (3)	-0.014 (3)	0.001 (3)	-0.002 (3)
C13	0.153 (6)	0.101 (4)	0.067 (3)	-0.036 (4)	0.029 (3)	-0.006(3)
C14	0.070 (3)	0.135 (4)	0.078 (3)	-0.044 (3)	0.019 (2)	-0.036 (3)
C15	0.054 (2)	0.107 (3)	0.063 (2)	-0.004 (2)	0.0058 (19)	-0.017 (2)
C16	0.050 (2)	0.087 (3)	0.0518 (18)	-0.0079 (19)	0.0039 (16)	-0.0057 (17)
C17	0.049 (2)	0.068 (2)	0.0527 (19)	-0.0041 (19)	0.0037 (18)	0.0024 (17)
C18	0.082 (3)	0.086 (3)	0.062 (2)	0.011 (2)	0.009 (2)	-0.002 (2)
C19	0.182 (5)	0.084 (3)	0.101 (3)	0.009 (3)	-0.002 (3)	-0.015 (3)

C20	0.099 (4)	0.151 (5)	0.065(2) 0.108(3)	0.061(4)	0.006(3)	0.000(3)
021	0.000 (5)	0.210 (0)	0.100 (5)	0.000 (4)	0.001 (5)	0.037 (+)
Geometric para	meters (Å, °)					
O1—C9		1.421 (4)	C10-	—C11	1.3	95 (5)
O1—H1		0.8200	C11-	C12	1.3	53 (6)
O2—C17		1.235 (4)	C11-	—H11	0.9	300
N1-C17		1.334 (4)	C12-	—C13	1.3	47 (6)
N1-C18		1.482 (4)	C12-	—H12	0.9	300
N1-C20		1.487 (5)	C13-	—C14	1.3	82 (6)
C1—C2		1.372 (5)	C13-	—Н13	0.9	300
C1—C6		1.378 (5)	C14-	—C15	1.4	-06 (6)
C1—H1A		0.9300	C14-	—H14	0.9	300
C2—C3		1.353 (6)	C15-	—H15	0.9	300
С2—Н2		0.9300	C16-	—C17	1.5	515 (4)
C3—C4		1.356 (6)	C16-	—H16A	0.9	700
С3—Н3		0.9300	C16-	—H16B	0.9	700
C4—C5		1.377 (5)	C18-	—C19	1.4	80 (5)
C4—H4		0.9300	C18-	—H18A	0.9	700
C5—C6		1.382 (5)	C18-	—H18B	0.9	700
С5—Н5		0.9300	C19-	—H19A	0.9	600
C6—C7		1.464 (4)	C19-	—H19B	0.9	600
С7—С8		1.303 (4)	C19-	—Н19С	0.9	600
С7—Н7		0.9300	C20-	—C21	1.5	08 (7)
C8—C9		1.515 (4)	C20-	—H20A	0.9	700
С8—Н8		0.9300	C20-	—Н20В	0.9	700
C9—C10		1.521 (5)	C21-	—H21A	0.9	600
C9—C16		1.540 (4)	C21-	—H21B	0.9	600
C10—C15		1.373 (5)	C21-	—H21C	0.9	600
С9—01—Н1		109.5	C12-		12	0.9 (5)
C17—N1—C18		119.3 (3)	C12-	—С13—Н13	11	9.5
C17—N1—C20		124.7 (3)	C14-	—С13—Н13	11	9.5
C18—N1—C20		115.6 (3)	C13-		113	8.7 (4)
C2—C1—C6		120.8 (4)	C13-		12	0.7
C2—C1—H1A		119.6	C15-		12	0.7
C6-C1-H1A		119.6	C10-		12	0.9 (4)
C3—C2—C1		120.9 (4)	C10-		119	9.6
С3—С2—Н2		119.6	C14-		119	9.6
C1—C2—H2		119.6	C17-	C16C9	11.	3.8 (3)
C2—C3—C4		120.0 (4)	C17-	—C16—H16A	10	8.8
С2—С3—Н3		120.0	С9—	-C16—H16A	10	8.8
С4—С3—Н3		120.0	C17-		10	8.8
C3—C4—C5		119.5 (4)	С9—	-C16—H16B	10	8.8
C3—C4—H4		120.2	H16	A—C16—H16B	10	7.7
С5—С4—Н4		120.2	O2—	C17N1	12	0.9 (3)
C4—C5—C6		121.8 (4)	O2—	-C17-C16	12	0.7 (3)
С4—С5—Н5		119.1	N1-	C17C16	113	8.2 (3)
С6—С5—Н5		119.1	C19-		11	1.6 (3)

C1—C6—C5	117.0 (3)	C19—C18—H18A	109.3
C1—C6—C7	123.1 (3)	N1	109.3
C5—C6—C7	119.9 (3)	C19—C18—H18B	109.3
C8—C7—C6	126.6 (3)	N1-C18-H18B	109.3
С8—С7—Н7	116.7	H18A—C18—H18B	108.0
С6—С7—Н7	116.7	C18—C19—H19A	109.5
С7—С8—С9	126.4 (3)	C18—C19—H19B	109.5
С7—С8—Н8	116.8	H19A—C19—H19B	109.5
С9—С8—Н8	116.8	C18—C19—H19C	109.5
O1—C9—C8	108.0 (3)	H19A—C19—H19C	109.5
O1—C9—C10	111.3 (3)	H19B—C19—H19C	109.5
C8—C9—C10	109.0 (2)	N1-C20-C21	111.8 (4)
O1—C9—C16	109.2 (2)	N1-C20-H20A	109.3
C8—C9—C16	107.4 (2)	C21—C20—H20A	109.3
C10—C9—C16	111.8 (3)	N1—C20—H20B	109.3
C15—C10—C11	117.1 (4)	C21—C20—H20B	109.3
C15—C10—C9	122.3 (3)	H20A—C20—H20B	107.9
C11—C10—C9	120.6 (3)	C20-C21-H21A	109.5
C12—C11—C10	122.6 (4)	C20-C21-H21B	109.5
C12—C11—H11	118.7	H21A—C21—H21B	109.5
C10-C11-H11	118.7	C20—C21—H21C	109.5
C13—C12—C11	119.8 (5)	H21A—C21—H21C	109.5
C13—C12—H12	120.1	H21B—C21—H21C	109.5
C11—C12—H12	120.1		
C6—C1—C2—C3	-0.2 (6)	C9-C10-C11-C12	176.7 (3)
C1—C2—C3—C4	0.2 (7)	C10-C11-C12-C13	0.3 (6)
C2—C3—C4—C5	0.0 (7)	C11-C12-C13-C14	0.0 (6)
C3—C4—C5—C6	-0.3 (7)	C12-C13-C14-C15	-0.2 (6)
C2—C1—C6—C5	0.0 (5)	C11-C10-C15-C14	0.1 (5)
C2—C1—C6—C7	-179.4 (3)	C9—C10—C15—C14	-176.8 (3)
C4—C5—C6—C1	0.3 (6)	C13-C14-C15-C10	0.1 (5)
C4—C5—C6—C7	179.7 (4)	O1—C9—C16—C17	-56.6 (4)
C1—C6—C7—C8	8.0 (6)	C8—C9—C16—C17	-173.4 (3)
С5—С6—С7—С8	-171.4 (4)	C10-C9-C16-C17	67.0 (4)
C6—C7—C8—C9	-179.3 (3)	C18—N1—C17—O2	4.0 (5)
С7—С8—С9—О1	-0.9 (5)	C20-N1-C17-O2	176.3 (4)
C7—C8—C9—C10	-122.0 (4)	C18—N1—C17—C16	-171.8 (3)
C7—C8—C9—C16	116.7 (4)	C20-N1-C17-C16	0.5 (5)
O1—C9—C10—C15	-4.0 (4)	C9—C16—C17—O2	20.4 (5)
C8—C9—C10—C15	115.1 (3)	C9—C16—C17—N1	-163.8 (3)
C16—C9—C10—C15	-126.3 (3)	C17—N1—C18—C19	-89.5 (4)
O1-C9-C10-C11	179.2 (3)	C20—N1—C18—C19	97.5 (4)
C8—C9—C10—C11	-61.8 (4)	C17—N1—C20—C21	-85.4 (4)
C16-C9-C10-C11	56.8 (4)	C18—N1—C20—C21	87.2 (4)
C15-C10-C11-C12	-0.3 (5)		

